α-Thioalkylation of Zinc Dienolates as an Entry to 4-Substituted 1-tert-Butoxy-7a-methylhexahydroindenes
DOI:
https://doi.org/10.17721/fujcV3I1P29-45Keywords:
Zinc dienolates, Thioalkylation of Indene derivatives, SteroidsAbstract

Hexahydroindenes 10 are readily available in 3 steps with an overall yield of 41 – 45 % starting from the Hajos Wiechert ketone 1. Alkylation of the α,β-unsaturated ketone 1 at C-4 has been achieved by thioalkylation of the corresponding zinc dienolate 2 with α-chlorosulfides of type 3. Subsequent in situ reduction and desulfurization of the β-(phenylthio) ketones 4 leads directly to the 4-substituted hexahydroindene-5-ols 6 which can be deoxygenated via their mesylates to the hexahydroindenes 10.
References
Groth U, Halfbrodt W, Kalogerakis A, Köhler T, Kreye P. 3-Substituted and 2,3-Disubstituted Cyclopentanones via an Asymmetric Tandem 1,4-Addition/Dieckmann Cyclization. Synlett 2004;(2):0291-0294. https://doi.org/10.1055/s-2003-45008
Arnecke R, Groth U, Köhler T. Thioalkylation of Enolates, IV. α-Alkylidenecyclopentanones by α-Alkylidation of Methyl 2-Oxocyclopentanecarboxylate. Liebigs Annalen der Chemie 1994;1994(9):891-894. https://doi.org/10.1002/jlac.199419940908
Quinkert G, Stark H. Stereoselective Synthesis of Enantiomerically Pure Natural Products—Estrone as Example. Angewandte Chemie International Edition in English 1983;22(9):637-655. https://doi.org/10.1002/anie.198306373
Wiechert R. The Role of Birth Control in the Survival of the Human Race. Angewandte Chemie International Edition in English 1977;16(8):506-513. https://doi.org/10.1002/anie.197705061
Wiechert R. Modern Steroid Problems. Angewandte Chemie International Edition in English 1970;9(5):321-332. https://doi.org/10.1002/anie.197003211
Schomburg D, Thielmann M, Winterfeldt E. Dienes as chiral templates. Tetrahedron Letters 1986;27(48):5833-5834. https://doi.org/10.1016/s0040-4039(00)85339-3
Matcheva K, Beckmann M, Schomburg D, Winterfeldt E. Chiral Cyclopentadienes. Synthesis 1989;1989(11):814-817. https://doi.org/10.1055/s-1989-27399
Eder U, Sauer G, Wiechert R. New Type of Asymmetric Cyclization to Optically Active Steroid CD Partial Structures. Angewandte Chemie International Edition in English 1971;10(7):496-497. https://doi.org/10.1002/anie.197104961
Hajos Z, Parrish D, Oliveto E. Total synthesis of optically active (−)17β-hydroxy-Δ9(10)-desA-androsten-5-one. Tetrahedron 1968;24(4):2039-2046. https://doi.org/10.1016/s0040-4020(01)82508-4
Crispin D, Vanstone A, Whitehurst J. Experiments in steroid synthesis: oestrone. J. Chem. Soc., C 1970;(1):10. https://doi.org/10.1039/j39700000010
Ihara M, Sudow I, Fukumoto K, Kametani T. Stereoselective total synthesis of testosterone and androsterone via A / B -ring construction of the steroidal ring system by intramolecular Diels–Alder reaction . J. Chem. Soc., Perkin Trans. 1 1986;(0):117-123. https://doi.org/10.1039/p19860000117
Ihara M, Takahashi T, Shimizu N, Ishida Y, Sudow I, Fukumoto K, Kametani T. A novel approach to estranes by an intramolecular double Michael reaction. Journal of the Chemical Society, Chemical Communications 1987;(19):1467. https://doi.org/10.1039/c39870001467
Ihara M, Takahashi T, Shimizu N, Ishida Y, Sudow I, Fukumoto K, Kametani T. Chiral construction of the estrane ring system by an intramolecular double Michael reaction. Journal of the Chemical Society, Perkin Transactions 1 1989;(3):529. https://doi.org/10.1039/p19890000529
Hudrlik P, Hudrlik A, Yimenu T, Waugh M, Nagendrappa G. Synthesis of β-silyl ketones via reaction of trimethylsilyllthium with unsaturated hydrazones. Application to the synthesis of brevicomin. Tetrahedron 1988;44(13):3791-3803. https://doi.org/10.1016/s0040-4020(01)86637-0
Williams R, Im M. Asymmetric synthesis of monosubstituted and .alpha.,.alpha.-disubstituted .alpha.-amino acids via diastereoselective glycine enolate alkylations. J. Am. Chem. Soc. 1991;113(24):9276-9286. https://doi.org/10.1021/ja00024a038
Eder U, Gibian H, Haffer G, Neef G, Sauer G, Wiechert R. Totalsynthese optisch aktiver Steroide, XIV: Synthese von Östradiol. Chemische Berichte 1976;109(8):2948-2953. https://doi.org/10.1002/cber.19761090829
Groth U, Köhler T, Taapken T. Thioalkylation of Enolates, III. Stereoselective Synthesis of Steroids and Related Compounds, II α-Thioalkylation of Zinc Dienolates to 4-Substituted 1-tert-Butoxy-7a-methyl-hexahydroinden-5-ones. Liebigs Annalen der Chemie 1994;1994(7):665-668. https://doi.org/10.1002/jlac.199419940705
Dale J, Mosher H. Nuclear magnetic resonance enantiomer regents. Configurational correlations via nuclear magnetic resonance chemical shifts of diastereomeric mandelate, O-methylmandelate, and .alpha.-methoxy-.alpha.-trifluoromethylphenylacetate (MTPA) esters. J. Am. Chem. Soc. 1973;95(2):512-519. https://doi.org/10.1021/ja00783a034
Chochrek P, Wicha J. An Expedited Approach to the Vitamin D trans -Hydrindane Building Block from the Hajos Dione . Org. Lett. 2006;8(12):2551-2553. https://doi.org/10.1021/ol060775y
Fujimoto Y, Tatsuno T. A novel method for reductive removal of tosyloxy and mesyloxy groups.. Tetrahedron Letters 1976;17(37):3325-3326. https://doi.org/10.1016/s0040-4039(00)93913-3
Armarego W, Chai C. Purification of Organic Chemicals. Purification of Laboratory Chemicals 5th ed. Elsevier, 2003:80-388. https://doi.org/10.1016/b978-075067571-0/50008-9
Groth U, Huhn T, Richter N. Thioalkylation of enolates, II. – α-Thioalkylation of Zinc Enolates to α,α-Disubstituted Ketones. Liebigs Annalen der Chemie 1993;1993(1):49-54. https://doi.org/10.1002/jlac.199319930109
Fleming I, Newton T. Stereospecific rearrangement of 2,2-disubstituted vinylsilane epoxides to the silyl enol ethers of 2,2-disubstituted aldehydes. Journal of the Chemical Society, Perkin Transactions 1 1984:119. https://doi.org/10.1039/p19840000119
Downloads
Published
Issue
Section
License
Copyright (c) 2015 French-Ukrainian Journal of Chemistry

This work is licensed under a Creative Commons Attribution 4.0 International License.
The French‑Ukrainian Journal of Chemistry holds copyright and publishes all articles under a Creative Commons Attribution 4.0 International licence (CC BY 4.0).
This license permits unrestricted use, sharing, adaptation, distribution, and reproduction in any medium or format, provided that the original author(s) and source are credited, a link to the license is included, and any changes made are indicated.
Authors grant the French‑Ukrainian Journal of Chemistry the exclusive right of first publication and may enter into separate, non‑exclusive distribution agreements for the published version (e.g., institutional repository, book chapter). Authors are also encouraged to post pre‑prints and post‑prints online to increase visibility and citation.










